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Abstract. Pose variations and occlusions are two major challenges for
unconstrained face detection. Many approaches have been proposed to
handle pose variations and occlusions in face detection, however, few of
them addresses the two challenges in a model explicitly and simulta-
neously. In this paper, we propose a novel face detection method called
Aggregating Visible Components (AVC), which addresses pose variations
and occlusions simultaneously in a single framework with low complexi-
ty. The main contributions of this paper are: (1) By aggregating visible
components which have inherent advantages in occasions of occlusions,
the proposed method achieves state-of-the-art performance using only
hand-crafted feature; (2) Mapped from meanshape through component-
invariant mapping, the proposed component detector is more robust to
pose-variations (3) A local to global aggregation strategy that involves
region competition helps alleviate false alarms while enhancing localiza-
tion accuracy.

1 Introduction

Unconstrained face detection is challenging due to pose and illumination vari-
ations, occlusions, blur, etc. While illumination variations are handled relative-
ly better due to many physical models, pose variations and occlusions are the
most commonly encountered problems in practice1. Many approaches have been
specifically proposed to solve pose variations [2–4] and occlusions [5–9], however,
few of them addresses pose variations and occlusions in a model explicitly and
simultaneously.

Recently, a number of Convolutional Neutral Network (CNN) [10] based face
detection methods [11–15] have been proposed due to the power of CNN in deal-
ing with computer vision problems. However, CNN models generally deal with
problems in face detection by learning from a large number of diverse training

1 Blur or low resolution is a challenging problem mainly in surveillance. Though many
blur face images exist in current benchmark databases (e.g. FDDB [1]), they are
intentionally made out of focus in background while the main focus is the center
figures in news photography.
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samples. Such data driven solutions may be good in dealing with various face
variations, however, they usually result in very complex models that run slowly,
which limits their application in practice, especially in embedding devices. On the
other hand, Yang et al. [13] proposed a specific architecture called Faceness-Net,
which considers facial component based scoring and their spatial configuration
to explicitly deal with occluded face detection. This work inspires that explicit
modeling of challenges in face detection is still required and more effective than
pure data driven, though the fixed spatial configuration in Faceness-Net is still
an issue, and the model is still expensive to apply.

Putting occlusions and large pose variations together, a common issue is that
some facial components are invisible under either condition. This motivates us
to only detect visible components that share some pose invariance property, and
adaptively aggregate them together to form the whole face detection. There-
fore, in this paper we propose a novel face detection method called Aggregating
Visible Components (AVC), which addresses pose variations and occlusions si-
multaneously in a single framework.

Specifically, to handle pose variations, we define two pose-invariant (or pose-
robust) components by considering half facial view, and a regression based local
landmark alignment. Such a consistent component definition helps to reduce the
model complexity. Accordingly, we train two component detectors, mirror them
to detect the other half view, and introduce a local region competition strategy
to alleviate false detections. To handle facial occlusions, we only detect visible
facial components, and build a local to global aggregation strategy to detect
the whole face adaptively. Experiments on the FDDB and AFW databases show
that the proposed method is robust in handling pose variations and occlusions,
achieving much better performance but lower model complexity compared to the
corresponding holistic face detector.

The remaining parts of this paper are organized as follows. Section 2 gives a
concise review of related works. Section 3 gives an overview of the proposed AVC
detector. Section 4 introduces the pose-invariant component definition and the
detector training. In Section 5, we present the local region competition strategy
and the adaptive local to global aggregation strategy. Experimental results on
AFW and FDDB are shown and discussed in Section 6 and we conclude the
paper in Section 7.

2 Related Works

Given that the original Viola-Jones face detector [16] is limited to multi-view face
detection, various cascade structures have been proposed to handle pose varia-
tions [2–4]. Today multi-view face detection by partitioning poses into discrete
ranges and training independently is still a popular way to handle pose varia-
tions, for example, in recent works [17, 12]. Zhu and Ramanan [18] proposed to
jointly detect a face, estimate its pose, and localize face landmarks in the wild by
a Deformable Parts-based Model (DPM), which was further improved in [19] and
[20]. Ranjian et al. [21] proposed to combine deep pyramid features and DPM



Face Detection by Aggregating Visible Components 3

to handle faces with various sizes and poses in unconstrained settings. Chen et
al. [22] proposed to combine the face detection and landmark estimation tasks
in a joint cascade framework to refine face detection by precise landmark detec-
tions. Liao et al. [23] proposed to learn features in deep quadratic trees, where
different views could be automatically partitioned. These methods are effective
in dealing with pose variations, however, not occlusions simultaneously.

Face detection under occlusions is also an important issue but has received
less attention compared to multi-view face detection, partly due to the difficulty
of classifying arbitrary occlusions into predefined categories. Component-based
face detector is a promising way in handling occlusions. For example, Chen et
al. [8] proposed a modified Viola-Jones face detector, where the trained detector
was divided into sub-classifiers related to several predefined local patches, and
the outputs of sub-classifiers were re-weighted. Goldmann et al. [24] proposed to
connect facial parts using topology graph. Recently, Yang et al. [13] proposed
a specific architecture called Faceness-Net, which considers faceness scoring in
generic object proposal windows based on facial component responses and their
spatial configuration, so that face detection with occlusions can be explicitly
handled. However, none of the above methods considered face detection with
both occlusions and pose variations simultaneously in unconstrained scenarios.

Our work is also different from other part-based methods like [25–29] in that
[25] describes an object by a non-rigid constellation of parts and jointly optimize
parameters whereas we learn component detectors independently and apply an
aggregation strategy to constitute a global representation. On the other hand,
AVC define parts via component-invariant mapping, in contrast to [26] which
defines parts by a search procedure while [27–29] deploy CNN structures.

Recently, the Convolutional Neutral Network (CNN) [10] based methods [11–
15] have been proposed for face detection due to the power of CNN in dealing
with computer vision problems. For example, Li et al. [11] proposed a cascade
architecture based on CNN and the performance was improved by alternating
between the detection net and calibration net. Most recently Zhang et al. [14]
and Ranjan et al. [15] combined face detection with other vision tasks such as
face alignment and involved multi-task loss into CNN cascade.

3 Overview of the Proposed Method

Fig. 1 is an overview of the proposed AVC face detection method. It includes
three main steps in the detection phase: visible component detection step, local
region competition step, and the local to global aggregation step. AVC works
by detecting only the visible components which would be later aggregated to
represent the whole face. Two half-view facial component detectors are trained,
and for this we introduce a pose-invariant component definition via a regression
based local landmark alignment, which is crucial for training sample cropping
and pose-invariant component detection. Then the two learned detectors are
mirrored to detect the other half view of the facial components. Next, the de-
tected visible facial components go through a local region competition module
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to alleviate false detections, and finally a local to global aggregation strategy is
applied to detect the whole face adaptively.

(a) input (b) eyes (c) all (d) refine (e) output

Fig. 1. The processing steps of the proposed AVC face detection method. (a) Input
image. (b) Visible eye detection. (c) Detection of all visible components (Red: left eye;
Blue: right eye; Green: left mouth; Pink: right mouth). (d) Refinement after local region
competition. (e) Aggregated whole face detection.

The intuition behind our component-based design is the fact that face images
in real-world applications are often with large pose variations and occlusions.
Consider for example, a face turning left over 60 degrees (see Fig. 2(a)), where the
holistic face detector unavoidably includes unwanted backgrounds (see Fig. 2(b)).

(a) original (b) square (c) LE (d) LM (e) global

Fig. 2. Illustration of holistic face detection and component-based face detection. (a)
Input image. (b) Typical holistic face detection. (c) Left eye (LE) detection. (d) Left
mouth (LM) detection. (e) Aggregating LE and LM to get a global detection.

However, a robust face detector should not only predict the number of faces
but also give bounding boxes as tight as possible. The criteria on this perfor-
mance was first introduced by FDDB [1], a face benchmark that employs both
discrete metric and continuous metric for evaluation. While a typical face de-
tector may fail to bound a profile face tightly and miss faces under occlusions,
we discover however, that pose variations and occlusions can be jointly solved
by locating and aggregating facial components. We trained two facial comonent
detectors respectively for the detection of left eyebrow + left eye (denoted as LE
Fig 2(c)) and left nose + left mouth (denoted as LM Fig 2(d)).

It’s observed that although a face with large rotation towards left may lead
to left eye invisible, we can still, under this circumstance, locate the right eye
or mouth and nose etc. It also applies to occlusions where for example, the left
half face is occluded by another person’s shoulder, we can still locate the whole
face by the detection of right eye. Furthermore, we only consider training two
half facial view components, and mirror them to detect the other half view. This
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strategy not only reduces the training effort, but also enables us to deal with
larger pose variations because for example, the left eye component appears to
be invariant under 0− 60◦ pose changes, and beyond this range the right eye or
other component is usually detectable.

4 Pose-invariant Component Detection

4.1 Pose-invariant Component Mapping

As was indicated in AFLW [30], although there is largely an agreement on how
to define anchor points and extents of rectangle for frontal faces, it’s not so obvi-
ous for profile and semi-profile views, which makes it harder to get consistently
annotated samples for training. Unlike the training input of a holistic face de-
tector, facial part detector requires uniform eye patches and mouth patches as
training set. This would not be made possible without pose-invariant component
mapping.

Samples in AFLW consist of 21 landmarks. We first calculate the mean shape
of the whole database with samples normalized and missing coordinates exclud-
ed. Region in the mean shape which we want to map ie. left eyebrow and left
eye for LE component is mapped directly to a new input sample by applying the
transformation

ax̄ + x0 = x (1)

aȳ + y0 = y (2)

Note that in (1) and (2) x̄ and ȳ are vectors representing x coordinates and
y coordinates of mean shape while x and y representing those of a new sample.
E is a nx1 vector with all elements being 1, x0, y0 are scalars that denote offsets
and n is the number of landmarks used for regression. Closed form solution can
be derived as the following

a =
x̄T · x + ȳT · y − 1

n · (x̄T · E)(xT · E) − 1
n · (ȳT · E)(yT · E)

x̄T · x + ȳT · y − 1
n · (x̄T · E)

2 − 1
n · (ȳT · E)

2 (3)

x0 =
1

n
· xT · E − a

1

n
· x̄T · E (4)

y0 =
1

n
· yT · E − a

1

n
· ȳT · E (5)

An intuitive visual interpretation is shown in Fig. 3. In 3(c), blue points are
annotated landmarks while red points are mapped from meanshape. Positive
samples extracted in this way retain excellent uniformity, which would be used
for training LE and LM component detector. The pose-invariant component
mapping method is also used for preparing negative samples for bootstrapping
(see Fig. 4).
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(a) Input (b) LE mean-
shape

(c) LE alignment (d) LE crop-
ping

(e) Input (f) LM meanshape (g) LM alignment (h) LM cropping

Fig. 3. Pose-invariant component mapping and cropping. (a) Input. (b) Meanshape of
the LE component. (c) Regression based local landmark alignment of LE component.
(d) Cropping of the LE component. (e) Input. (f) Meanshape of the LM component.
(g) Regression based local landmark alignment of LM component. (d) Cropping of the
LM component.

Fig. 4. Positive and negative examples for components. The first and third rows show
positive training samples of the LE and LM components respectively, while the second
and forth rows show images for bootstrapping negative LE and LM samples respec-
tively.

4.2 Why LE and LM ?

In our paper, we trained two part-based detectors, namely LE (left eyebrow and
left eye) and LM (left nose and left mouth) and Fig 4 displays some positive and
hard-negative training samples obtained using method of the last subsection. But
why not eyes, noses or other patches? Our motivations are: (1) These patches
are not defined arbitrarily or conceptually but based on the regression of local
landmarks. As in Fig 3, these landmarks are derived by LE/LM meanshape
of AFLW to ensure that they retain invariance throughout the database (2)
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Why 6 landmarks instead of 3 or 9? According to AFLW, a nose is defined
by 3 landmarks, the width/height of these patches would then be too small for
training and testing. While 9 landmarks would result with a facial area too broad
thus vulnerable for occlusions.

4.3 Training procedure

In this subsection, we give a brief introduction about the feature employed for
facial representation as well as the work flow of the training algorithm.

Feature: We choose NPD [23] as our feature mainly for its two properties:
illumination invariant and fast in speed because each computation involves only
two pixels. For an image with size p = w× h , the number of features computed
is C2

p which can be computed beforehand, leading to superiority in speed for
real world applications. With the scale-invariance property of NPD, the facial
component detector is expected to be robust against illumination changes which
is important in practice.

Training framework: The Deep Quadratic Tree (DQT) [23] is used as
weak classifier which learns two thresholds and is deeper compared to typical
tree classifiers. Soft-Cascade [31] as well as hard-negative mining are applied for
cascade training. While individual NPD [32] features may be ”weak”, the Gentle
AdaBoost algorithm is utilized to learn a subset of NPD features organized in
DQT for stronger discriminative ability.

5 Local to Global Aggregation

5.1 Symmetric Component Detection

Fig 5 shows some example outputs by LE and LM detector respectively. As can
be seen, our component-based detector has the inherent advantages under occa-
sions of occlusions (5(a),5(h)) and pose-variations (5(c),5(g)), where a holistic
detector would normally fail. The detection of right eyebrow + right eye (RE)
and right mouth + right nose (RM) can be achieved by deploying the detector
of their left counterpart. Fig. 6(a) to Fig. 6(d) illustrates how we locate RM and
RE using the same detectors as LM and LE.

5.2 Local Region Competition

Adopting facial part detection also brings about many troublesome issues. If
handled improperly, the performance will vary greatly. First, LE, LM, RE, RM
detector for different facial parts will each produce a set of candidate positive
windows with a set of confidence scores. But the goal for face detection is to
locate faces each with a bounding box as tight as possible, so we need to merge
these detections from different facial part detectors and remove duplicated win-
dows. A common solution is Non-Maximum Suppression (NMS) [33] but issue
arises on how to do window merging with a good trade-off between high preci-
sion rate and high detection rate. Second, different benchmarks with different
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Some example component detections by the proposed LE (upper row) and LM
facial component detector.

(a) original (b) LE (c) mirrored (d) RE

Fig. 6. 6(a): input image; 6(b): left eye detection; 6(c): left eye detection in mirrored
image; 6(d): right eye detection mapped back to the original image.

annotation styles could lead to biased evaluation. Noted in [20], this diversity
becomes more prominent for profile faces. In this section, we address the above
issues by exploiting the advantage of a competitive strategy.

Fig.1 illustrates the idea of the proposed local region competition. The core
idea is to reject false alarms during merging (compete) while improving local-
ization accuracy during aggregation (collaborate). In Algorithm 1 line 6 to line
11 first obtains candidate outputs of a specific facial region by LE, RE, LM, RM
facial part detectors denoted as region rects, see Fig 1(c) which shows detection
results of all components and Fig 1(d) after competition as an example. In this
example, left eye region may well contain the outputs of other facial part detec-
tors such as RE (false alarms) other than LE and vice versa. It is through this
competitive strategy that we ensure candidate windows of only one facial part
detector are reserved for each region, rooting out the possibility of using false
alarms for aggregation.

5.3 Aggregation Strategy

After deploying competitive strategy to exclude possible false positives, the task
now is to ensure accurate localization of detection outputs. This is achieved by
taking the full use of information from rects of different regions. We use rectangle
as facial representation. Note that our proposed pipeline also applies to elliptical
representation as the aforementioned workflow remains unchanged.
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Algorithm 1 Detection framework with local region competition strategy

Require:
Input and Model: LE and LM model; RGB or gray image I
Options: eyeHeight, eyeWidth, mouthHeight, mouthWidth for scanning windows;
overlap for IOU; minEyeSize; minMouthSize; numThreads for parallel computing

Ensure: outRect
1: [LE,LM]=Scan(eyeModel,mouthModel,I,eyeHeight,eyeWidth,mouthHeight,

mouthWidth,minEyeSize,minMouthSize,numThreads)
2: Symmetrically detect RE and RM
3: LE ∪ LM ∪RE ∪RM ⊆ R
4: predicate(i,j)=1 if IOU between R pair (i,j) > overlap
5: [label,numCandi]=Partition(predicate)
6: for i=1:numCandi do
7: Get region rects{i} with rects labelled i
8: for r in region rects{i} do
9: categorize r to LE, LM, RE, RM detector

10: end for
11: Reserve rects from the detector with the highest score
12: Fitting rects to bounding boxes for the whole face
13: end for
14: predicate(i,j)=1 if IOU between rectangle pair (i,j) > overlap
15: [label,numCandi]=Partition(predicate)
16: for i=1:numCandi do
17: Weight adjustment
18: end for
19: Elimination
20: return outRect

In Algorithm 1 line 12, winning rectangles from each region as illustrated in
Fig 5 are regressed directly to bounding boxes. Note that we only learn two sets
of regression parameters (linear regression), because during inference the coordi-
nates of RE/RM component are first mirrored, regressed and then mirrored back
using the same parameters of their left counterparts. This is a local to global
bottom up strategy because rects of different facial regions are mapped to global
facial representations. In Algorithm 1 Line 15 to Line 18, these rects are then
concatenated for partitioning using disjoint-set algorithm. Then the locations of
partitioned rects are translated and adjusted by tuning their widths and heights
according to their confidence scores (weights). Through this process, information
of different regions are collaborated to get a more accurate localization of the
whole face. Finally, NMS [33] is deployed to eliminate interior rects.

6 Experiments

6.1 Training Parameters:

Annotated Facial Landmarks in the Wild (AFLW) [1] is an unconstrained face
benchmark that contains 25993 face annotations in 21997 real world images with
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large pose variations, occlusions, illumination changes as well as a diversity of
ages, genders, and ethnicity. In total, we use 43994 images from AFLW together
with its flipped counterpart as positive samples and 300000 background images
for training. And an additional 12300 images of natural scenes are scraped from
the Internet to mask face components for hard-negative mining. In training AVC,
images of 15x20 pixels are assigned to LE component while images of 20x20 pixels
are used for LM. Pose-invariant component mapping is deployed to crop positive
training patches and prepare bootstrapping samples.

6.2 AFW Results:

Annotated Faces in the Wild (AFW) [18] contains 205 images collected from
Flickr that contain images of cluttered scenes and different viewpoints.

To evaluate on AFW, we fit winning rects from local component detectors
to rectangle representations of the whole face, which would be used for further
aggregation. The fitting parameters are learned on AFLW using 10-cross vali-
dation and this also applies to the learning of elliptical fitting parameters for
testing on FDDB.

We use the evaluation toolbox provided by [20]. The comparison of Precision-
Recall curves generated by different methods is shown in Fig 7(a). We compare
AVC with both academic methods like DPM, HeadHunter, Structured Models
and commercial systems like Face++ and Picasa. As can be seen from the figure,
AVC outperforms DPM and is superior or equal to Face++ and Google Picasa.
The precision of AVC is 98.68% with a recall of 97.13%, and the AP of AVC is
98.08%, which is comparable with the state-of-the-art methods. Example detec-
tion results are shown in the first row of Fig 8, note that we output rectangle
for evaluation on AFW.

6.3 FDDB Results:

Face Detection Data Set and Benchmark (FDDB) [1] contains 2845 images with
5171 faces, with a wide range of arbitrary poses, occlusions, illumination changes
and resolutions. FDDB uses elliptical annotations and two types of evaluation
metrics are applied. One is the discrete score metric which counts the number
of detected faces versus the number of false alarms. A detected bounding box is
considered true positive if it has an IoU of over 0.5 with ground truth. The other
is the continuous score metric that measures the IoU ratio as the indicator for
performance.

As FDDB uses ellipse for annotations, we fit the output rectangles to ellip-
tical representations of the whole face. We use the evaluation code provided by
Jain and Learned-Miller [1] and the results using discrete score metric are shown
in Figure 7. We compare our results with the latest published methods on FD-
DB including MTCNN, DP2MFD, Faceness-Net and Hyperface. Ours performs
worse than MTCNN and DP2MFD which resort to powerful yet complex CN-
N features but is better than Faceness-Net, which is also component-based but
with the help of CNN structure. AVC gets 84.4% detection rate at FP=100, and
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(a) Precision-recall cure on AFW (b) enlarged

(c) Curve of discrete score on FDDB (d) enlarged

Fig. 7. Experimental results on AFW and FDDB database. Best viewed in color.

a detection rate of 89.0% at FP=300. Example detection results are shown in the
second and third row of Fig 8, where faces under poses changes and occlusions
have been successfully located.

6.4 Does component-invariant mapping help ?

We have tried two other methods when preparing facial-component patches for
training component detectors. One is to define anchor points and extents of rect-
angle, the other is to project 3D landmarks back to 2D plane. However, unlike
training holistic face detector that gets by with ordinary methods, the unifor-
mity of component training-set under profile or semi-profile views deteriorates
notably compared to those under frontal views. The resulting detectors that we
have trained achieve at best 81% AP on FDDB. To the best of our knowledge,
it remains a tricky issue on how to achieve consistency under profile views [30].
This motivates us to make new attempts and explore component-invariant map-
ping, whose performance is further boosted with the help of symmetric compo-
nent detection because, when a face only exposes RE/RM component, LE/LM
component detector would fail. Second, its likely that symmetric component de-
tection presents a symmetric but unblocked or simpler view for detector. Third,
symmetric detection obviates the need to train another two more detectors and
regression parameters. Experiment shows that trained part-detectors using con-
ventional cropped patches will decrease AP by about 8.2% on FDDB.
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Fig. 8. Qualitive results of AVC on AFW (first row using rectangle representations)
and FDDB (second and third row using elliptical representations).

6.5 Model Complexity

As is shown in Table 1, different tree levels for training have been evaluated,
leading to different training stages and number of weak classifiers. Training FAR
indicates to what extent AVC has converged, but it can not reflect the perfor-
mance of the model on test set. The complexity of the model is measured by
aveEval, which means the average number of NPD features evaluated per de-
tection window. The lower the value of aveEval, the faster the detector. For the
sake of speed, this index is important for the choices of our component models.

Table 1. Comparison of model complexity between AVC and NPD

Model Weaks features aveEval

LE 200 6193 24.754
RE 200 6193 24.754
LM 300 3561 26.755
RM 300 3561 26.755
LE+RE+LM+RM 1000 19508 103.018

NPD 1226 46401 114.507

The aveEval in LE and LM are 24.754 and 26.755 respectively (See Table 1).
So the total number of features per detection window that AVC has to evaluate is
103.018 with symmetric detection considered, which is faster than NPD holistic
face detector implemented in [23] that has 46401 weak classifiers and an aveEval



Face Detection by Aggregating Visible Components 13

of 114.507. With regard to pose-variations and occlusions, AVC also outperforms
NPD detector by a notable margin on FDDB (See Fig 7(c)). Another advantage
of AVC is that storage memory required is low compared to CNN methods,
which is crucial for real-world applications. The total model size of AVC is only
2.65MB, smaller compared to NPD (6.31MB) or a typical CNN model.

7 Conclusion

In this paper, we proposed a new method called AVC highlighting component-
based face detection, which addresses pose variations and occlusions simultane-
ously in a single framework with low complexity. We show a consistent compo-
nent definition which helps to achieve pose-invariant component detection. To
handle facial occlusions, we only detect visible facial components, and build a
local to global aggregation strategy to detect the whole face adaptively. Exper-
iments on the FDDB and AFW databases show that the proposed method is
robust in handling illuminations, occlusions and pose-variations, achieving much
better performance but lower model complexity compared to the corresponding
holistic face detector. The proposed face detector is able to output local facial
components as well as meanshape landmarks, which may be helpful in landmark
detection initialization and pose estimation. We will leave it as future work for
investigation.
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