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Abstract. Face detection evaluation generally involves three steps: block
generation, face classification, and post-processing. However, firstly, face
detection performance is largely influenced by block generation and post-
processing, concealing the performance of face classification core mod-
ule. Secondly, implementing and optimizing all the three steps results
in a very heavy work, which is a big barrier for researchers who only
cares about classification. Motivated by this, we conduct a specialized
benchmark study in this paper, which focuses purely on face classifica-
tion. We start with face proposals, and build a benchmark dataset with
about 3.5 million patches for two-class face/non-face classification. Re-
sults with several baseline algorithms show that, without the help of
post-processing, the performance of face classification itself is still not
very satisfactory, even with a powerful CNN method. We’ll release this
benchmark to help assess performance of face classification only, and ease
the participation of other related researchers.
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1 Introduction

Face detection is a key and fundamental problem in facial analysis as it is usually
the first step to other high-level tasks such as face alignment, face recognition,
face attribute analysis, etc. Therefore, a well-designed benchmark is essential
to analyze the performance of face detection algorithms and advance the face
detection research.

In the literature, face detection is evaluated by scanning a set of images
containing faces in background, and counting true positives and false positives
by matching the detected bounding boxes with the ground truth. This evalua-
tion procedure generally involves three steps: block generation (multi-scale slid-
ing subwindows or objectness proposals), face classification, and post-processing
(non-maximum suppression, bounding box regression, etc.). Today, popular face
detection benchmarks such as AFW [4], FDDB [2], and WIDER FACE [3] still
continue to use such evaluation procedure.
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However, on one hand, the performance of face detection methods is largely
influenced by specific settings of block generation and post-processing, therefore,
it is not easy to know the specific performance of the core module, namely the
face classification part in existing methods. On the other hand, implementing all
the three steps and achieving a good overall face detection performance results in
a very heavy work, sometimes preventing researchers of related fields (e.g. feature
and classification researchers) in introducing their ideas for face detection. For
example, the AFW [4], FDDB [2], and WIDER FACE [3] benchmarks all require
that researchers start from scratch, from generating blocks, classifying faces, to
post-processing.

Motivated by this, we conduct a specialized large-scale benchmark study
in this paper, which focuses purely on face classification. We start with face
proposals, by which about 3.5 millions of face and non-face sample patches are
collected. Then, we build a large-scale benchmark dataset for two-class face clas-
sification evaluation. Accordingly, we evaluate several feature extraction methods
and classification algorithms and compare their performance. Our results show
that, without the help of post-processing, the performance of face classification
itself is still not very satisfactory, even with a powerful CNN method.

The data and evaluation code of this study will be released to the public1

to help assess performance of face classification, and ease the participation of
related researchers who want to try their algorithms for face detection. With this
benchmark, researchers only need to do feature extraction and face classification
per image patch, regardless the troubling block generation and post-processing
tasks. Even more easily, we provide some baseline features, so that general clas-
sification researchers are able to evaluate their classification algorithms.

2 Face Classification Benchmark

2.1 Face Proposals

RPN network is employed to extract proposals inspired by the work of Faster
R-CNN [9] and its recent application in face detection [10]. Note that generic
object proposal-generating methods such as [17–19] are not very suitable for our
classification benchmark because the amount of positive face patches generated
is too scarce and those patches are not as discriminative as a specially trained
RPN face proposal network.

We trained a 4-anchor RPN network with some slight modifications on the fc6
and fc7 InnerProduct layer of Zeiler and Fergus model [12]. The default anchor
ratio was set to 1:1 and we compute anchors at 4 different scales (2,8,16,32). Dur-
ing training, the number of categories are modified to 2 (face and background)
with 2*4 bounding box coordinates to be predicted. Softmax and smoothL1 loss
are deployed for training classification and bounding box prediction respectively.

All the proposals are generated from the training set of WIDER FACE [3]
containing 12,880 high-resolution images through this RPN convolutional neural

1 http://www.cbsr.ia.ac.cn/users/scliao/
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(a) Face patches extracted from RPN.

(b) Non-face patches extracted from RPN.

Fig. 1. Sample proposals generated by RPN. When the IOU between a face proposal
generated by RPN and a ground-truth label is greater than 0.5, we treat it as a face
patch. Otherwise, when the IOU is below 0.3, we treat it as a non-face patch.

network. There are about 300 proposals extracted from each image. WIDER
FACE contains 393,703 labelled faces collected from 32,203 images with a wide
variety in scales, poses, occlusions and expressions. What’s worth noticing about
WIDER FACE is that the images collected are taken in crowded scenes and
proves to be an effective training set and challenging evaluation set.

In our benchmark dataset, when the Intersection over Union (IOU) between
a face proposal generated by RPN and a ground-truth label is greater than 0.5,
we treat it as a face patch. Otherwise, when the IOU is below 0.3, we treat it as a
non-face patch. As a result, we collected a face classification benchmark (FCB)
database, which contains 3,558,142 proposals in total, of which 198,616 being
face patches. All images are resized to 24x24 for face classification benchmark.
Note that by doing so there may be some changes to the original aspect ratio.
Sample face patches and non-face patches extracted from the RPN network are
displayed in Fig 1.

2.2 Benchmark Protocol

As shown in Table 1, proposals are extracted from the first 6,440 images in
WIDER FACE are used as the training set, while the remaining proposals from
the next 6,440 images are used as testing set. In the testing set the size of Non-
face patches are about 20 times the size of face proposals. So if an algorithm
classifies all the positive samples as negative ones, it would still get 95% two-
class classification accuracy. Under such circumstances, it would be biased in the
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choice of our face detection algorithms if we solely take the two-class classification
accuracy as our evaluation index.

Table 1. Details of FCB Benchmark

Dataset #Img #Face Patches #Non-Face Patches

Training 6,440 112,124 1,666,947
Testing 6,440 86,492 1,692,579

Total 12,880 198,616 3,359,526

To reveal the ’true’ performance of a face classifier, we put stress on per-
formance at low False Accept Rate (FAR). Following the method in [5], the
performance of the proposed algorithms are displayed via ROC curve by vary-
ing the confident score threshold, with FAR in log space being the x axis and
True Positive Rate (TPR) being the y axis. Specifically, we measure the true
positive rate at FAR=10−3 to compare the performance of different algorithms.
Since there are altogether 1,779,071 proposals extracted from 6,440 images in
the test set, it means we only allow for False Positive Per Image (FPPI) of 0.28
in an image, which is both challenging and persuasive in terms of real world
applications.

3 Evaluation and Results

3.1 Feature extraction and Classification Methods

Traditional Methods: Illumination changes, occlusions and pose variation-
s are three fundamental problems for face detection under unconstrained set-
tings. Illumination-invariance is obtained in LOMO [8] by applying the Retinex
transform and the Scale Invariant Local Ternary Pattern (SILTP) for feature
representation. NPD [7] gives the nice properties of scale-invariance, bounded-
ness and its feature involves only two pixel values, hence robust to occlusion
and blur or low image resolution. We use the open source code of these two
feature representation methods in our experiments. Besides, LBP [14] together
with its variant MB-LBP [15] are also re-implemented for evaluation. We adopt
DQT+boosting [7] as our baseline classifier. We also tried SVM, but it appears
to be not effective to handle this challenging problem, and it is also not efficient
for our large-scale data. Therefore, we leaved SVM out finally.

CNN Methods: Convolutional Neural Network based methods have re-
ceived more and more attention due to its effectiveness in computer vision tasks.
In our experiments, a CIFAR-10 Net [6] based binary classification CNN and a
Cascade-CNN following the paradigm of [11] have been implemented.

Several CNN structures have been explored and we picked one with the best
performance based on CIFAR-10 and its detailed information is listed in Table 2.
As for the structure of Cascade-CNN, please refer to [11]. Note that for training
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Table 2. Model structure of CIFAR10-based CNN

Layer Name Filter Number Filter Size Stride Padding AF

conv1 32 3x3 1 2 -
max pool1 - 2x2 2 - RELU

conv2 32 3x3 1 2 RELU
ave pool2 - 2x2 2 - -

conv3 64 3x3 1 2 RELU
ave pool3 - 2x2 2 - -

ip1 64 - - - -
ip2 2 - - - -

Cascade-CNN, hard negative samples mined by the former net are used as non-
face samples to be used for the following net training and in training each net,
hard positive samples mined are aggregated to face proposals for further fine-
tuning.

3.2 Results and Discussion

The evaluation results on the whole test set are shown in Fig 2. From the re-
sults, we can see that the CIFAR-10 based CNN beats other methods due to its
powerful representation ability. Besides, it also outperforms Cascade-CNN by a
large margin. This is probably because in the process of cascade training, hard
negative samples mined by the last net contain a proportion of non-face patch-
es that actually contain faces but with a IOU less than 0.3, thus ’too hard’ to
identify for a shallow net structure (see Fig 3). Another possible reason is that
Cascade-CNN in [11] followed a pipeline of alternation between classification
net and calibration net; the Non Maximum Suppresion (NMS) is also deployed
during the Cascade-CNN training process, in contrast to the FCB evaluation,
which only requires classification net.

(a) ROC curve on FCB (b) enlarged

Fig. 2. Evaluation results on FCB test set, best viewed in color.
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However, even with the best performer CIFAR-10, the performance on FCB
is still far from satisfactory as observed from Fig 2, revealing that FCB is a large-
scale and challenging benchmark on face classification. Note that we only used
two CNN based methods while a more sophisticated network structure should
be able to achieve better performance.

(a) Hard positive samples mined by 24-net.

(b) Hard negative samples mined by 24-net.

Fig. 3. Some hard positive samples and some hard negative samples mined by the
24-net in the Cascade-CNN method [11].

As for hand-crafted features, MB-LBP obtains about 20% detection rate
compared to LBP (about 16%) detection rate at FAR of 10−3, which is rea-
sonable considering that MB-LBP encodes not only microstructures but also
macrostructures of image patterns, thus more comprehensive and robust than
LBP.

Table 3. Detection rate (%) of each algorithm at FAR=10−3

LOMO LBP MB-LBP NPD CNN Cascade CNN

17.42 15.98 19.42 15.47 43.10 32.66

At FAR of 10−3, LOMO performs slightly better than LBP, but its true pos-
itive rate increases rapidly as we move along the righthand direction of x axis.
It is not until FAR of 0.3% that LOMO outperforms MB-LBP. NPD achieves
comparable performance compared to LBP. As its values are computed involv-
ing only two pixels of an image, NPD is more sensitive than other algorithms
considering that face patches on FCB are not aligned. At FAR of 10−2, the over-
all rank is almost the same except that LOMO performs better than MB-LBP.
Please refer to Table 3 for more details.

Table 4 is a further illustration about the dimension of the original features
and selected features by the DQT based AdaBoost, as well as the training time,
testing time and platform of each algorithm employed in our evaluation. Note
that LOMO requires RGB images while other methods use gray images as input.
The first 4 algorithms are all combination of feature extraction and boosting
with Deep Quadratic Trees (DQT) while the last two are end to end CNN
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Table 4. Model details and speed of each algorithm

Algorithm #features #selected features training time(h) testing time(h) platform

LOMO 7,252 283,323 5.35 1.52 X5650CPU
LBP 768 20,269 1.80 0.44 X5650CPU
NPD 165,600 6,877,535 6.42 1.10 X5650CPU
MB-LBP 5,120 228,606 3.91 0.34 X5650CPU
CIFAR-10 CNN 64 64 2.20 0.50 K40-GPU
Cascade-CNN 560 560 5.85 0.60 Titan-GPU

methods, therefore the dimension of original features and selected features are
the same. Besides, CNN is generally faster to train since it takes the advantage of
GPU parallelization, but it’s also due to this fact that CNN runs less efficiently
compared to traditional methods on CPU or hand-held devices.

4 Conclusion

Face detection generally involves three steps with face classification being its
core module. However, it is not easy to determine the actual performance of the
face classification part due to the large influence of block generation and post-
processing in traditional benchmarks. Motivated by this, we conduct a special-
ized benchmark study in this paper, which focuses purely on face classification.
We start with face proposals by collecting about 3.5 millions of face and non-face
sample patches, and build a benchmark dataset (FCB) for two-class face classi-
fication evaluation. Our results show that, without the help of post-processing,
the performance of face classification itself is still not very satisfactory, even with
a powerful CNN method. The data and evaluation code of this study will be re-
leased to the public to help assess performance of face classification, and ease
the participation of other related researchers who want to try their algorithms
for face detection.

Acknowledgements

This work was supported by the National Key Research and Development Plan
(Grant No.2016YFC0801002), the Chinese National Natural Science Founda-
tion Projects #61473291, #61572501, #61502491, #61572536, NVIDIA GPU
donation program and AuthenMetric R&D Funds.

References

1. Kostinger M, Wohlhart P, Roth P M, et al. Annotated facial landmarks in the
wild: A large-scale, real-world database for facial landmark localization: Comput-
er Vision Workshops (ICCV Workshops), 2011 IEEE International Conference on.
IEEE, 2011: 2144-2151.



8 Jiali Duan1, Shengcai Liao2, Shuai Zhou3, and Stan Z. Li2

2. Vidit Jain and Erik Learned-Miller. FDDB: A Benchmark for Face Detection in
Unconstrained Settings. TechReport: UM-CS-2010-009, 2010

3. Yang, Shuo and Luo, Ping and Loy, Chen Change and Tang, Xiaoou. WIDER FACE:
A Face Detection Benchmark: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016

4. Zhu, Xiangxin and Ramanan, Deva. Face detection, pose estimation, and landmark
localization in the wild: Computer Vision and Pattern Recognition (CVPR), 2012

5. Dollar P, Wojek C, Schiele B, et al. Pedestrian detection: An evaluation of the state
of the art: IEEE transactions on pattern analysis and machine intelligence, 2012,
34(4): 743-761.

6. The CIFAR-10 dataset, https://www.cs.toronto.edu/~kriz/cifar.html
7. Liao, S and Jain, AK and Li, SZ. A Fast and Accurate Unconstrained Face Detector:

IEEE transactions on pattern analysis and machine intelligence, 2016, 38(2):211–223
8. Liao S, Hu Y, Zhu X, et al. Person re-identification by local maximal occurrence rep-

resentation and metric learning: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2015: 2197-2206.

9. Ren S, He K, Girshick R, et al. Faster R-CNN: Towards real-time object detec-
tion with region proposal networks. In: Advances in neural information processing
systems. 2015: 91-99

10. Jiang H, Learned-Miller E. Face Detection with the Faster R-CNN. arXiv preprint
arXiv:1606.03473, 2016.

11. Li H, Lin Z, Shen X, et al. A convolutional neural network cascade for face detec-
tion: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition. 2015: 5325-5334.

12. Zeiler M D, Fergus R. Visualizing and understanding convolutional networks: Eu-
ropean Conference on Computer Vision. In: Springer International Publishing, 2014:
818-833

13. Mathias M, Benenson R, Pedersoli M, et al. Face detection without bells and whis-
tles: European Conference on Computer Vision. Springer International Publishing,
2014: 720-735.

14. Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invari-
ant texture classification with local binary patterns: IEEE Transactions on pattern
analysis and machine intelligence, 2002, 24(7): 971-987.

15. Liao S, Zhu X, Lei Z, et al. Learning multi-scale block local binary patterns for face
recognition: International Conference on Biometrics. Springer Berlin Heidelberg,
2007: 828-837.

16. Yan J, Zhang X, Lei Z, et al. Face detection by structural models. In: Image and
Vision Computing, 2014, 32(10): 790-799.

17. Van de Sande K E A, Uijlings J R R, Gevers T, et al. Segmentation as selective
search for object recognition: International Conference on Computer Vision. IEEE,
2011: 1879-1886.

18. Zitnick C L, Dollr P. Edge boxes: Locating object proposals from edges: European
Conference on Computer Vision. Springer International Publishing, 2014: 391-405.

19. Arbelez P, Pont-Tuset J, Barron J T, et al. Multiscale combinatorial grouping:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2014: 328-335.


