

SLADE: A Self-Training Metric Learning Framework

Jiali Duan^{1,2}

Yen-Liang Lin²

Son Tran²

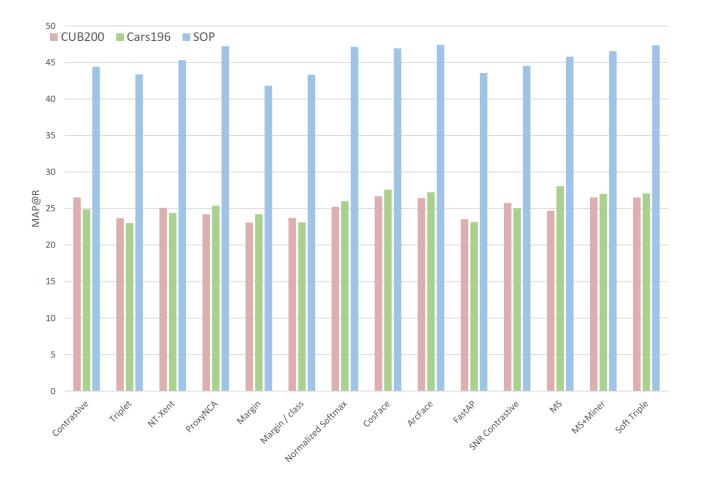
Larry S. Davis²

C.-C. Jay Kuo¹

¹ University of Southern California

² Amazon

A Review of Deep Metric Learning



Musgrave K, Belongie S, Lim S N. A metric learning reality check. ECCV 2020

Background of Self-Training

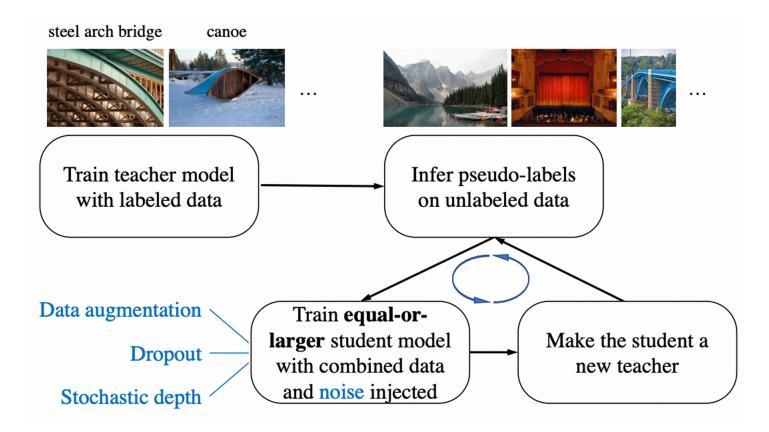


Image credit: Xie Q, Luong M T, Hovy E, et al. Self-training with noisy student improves imagenet classification, CVPR 2020

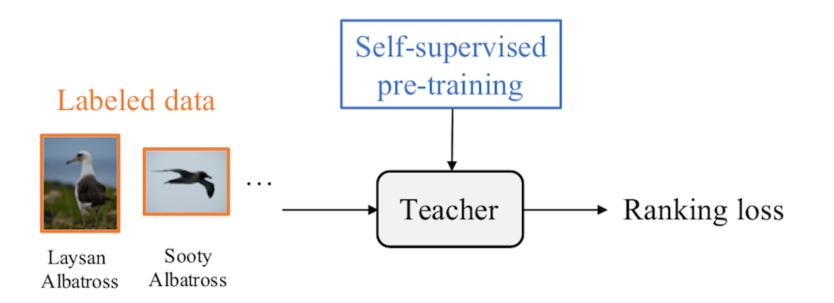
SLADE: A Self-Training Metric Learning Framework

Student model

Teacher model

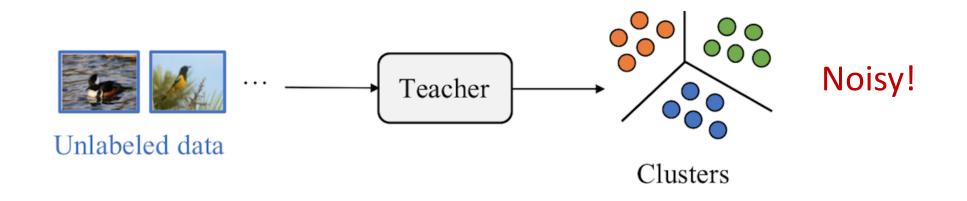
3. Optimization of student network and basis vectors (Sec. 3.3) 1. Self-supervised pre-training and fine-tuning for teacher network (Sec. 3.1) Labeled data Self-supervised Feature basis learning Embedding pre-training Labeled data . . . Crossentropy loss Laysan Sooty Student (•) Albatross Albatross Teacher Ranking loss Similarity \mathbf{a}_{2} distribution loss **a**, \mathbf{a}_{k} Sooty Laysan Albatross Albatross **Basis** vectors 2. Pseudo label generation (Sec. 3.2) Unlabeled data 000 → Ranking loss \circ 000 Teacher Sample mining Pseudo labels Unlabeled data Clusters **Basis** vectors

Step 1: Self-supervised Pretraining and Finetuning

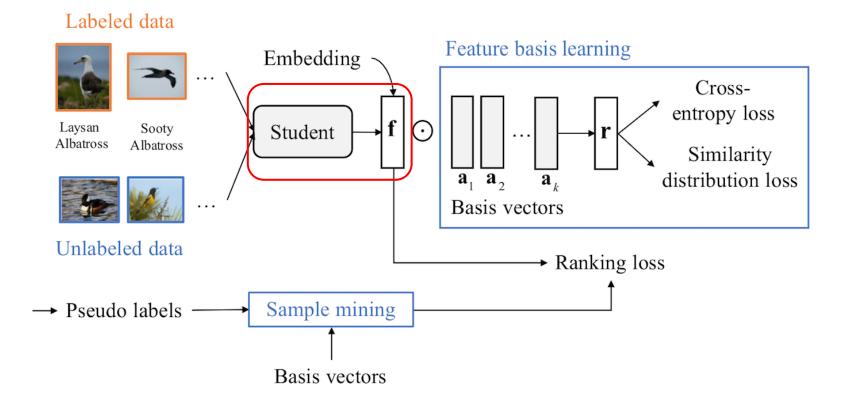


SWAV: Mathilde Caron et al., Unsupervised Learning of Visual Features by Contrasting Cluster Assignments . NeurIPS 2020. BYOL: Grill J B, Strub F, Altché F, et al. Bootstrap your own latent: A new approach to self-supervised learning.NeurIPS 2020. MoCo: He K, Fan H, Wu Y, et al. Momentum contrast for unsupervised visual representation learning. CVPR 2020

Step 2: Pseudo Label Generation

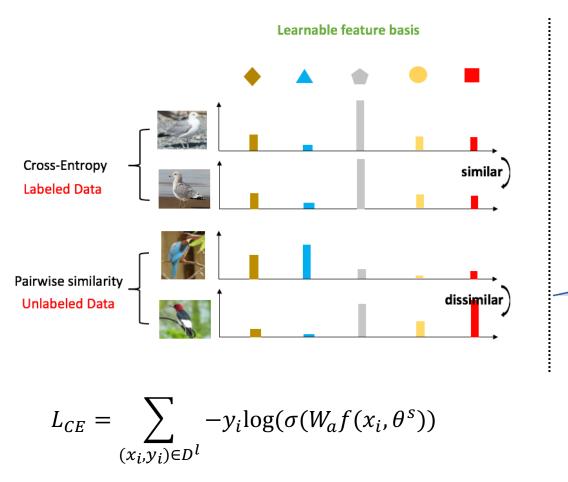


Step 3: Training of Student Network



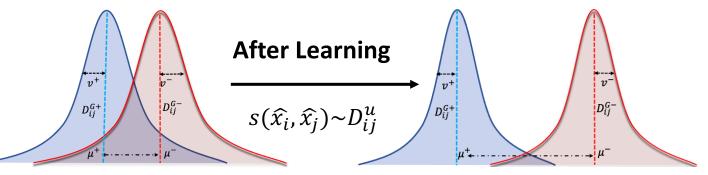
$$L = L_{rank}(D^{l}; \theta^{s}) + L_{rank}(D^{u}; \theta^{s}) + L_{basis}(D^{l}, D^{u}; \theta^{s}, W_{a})$$

Step 3: Feature basis learning



Goal: reduce overlap between distributions

- Maximize distance between two means
- Reduce variances of two distributions

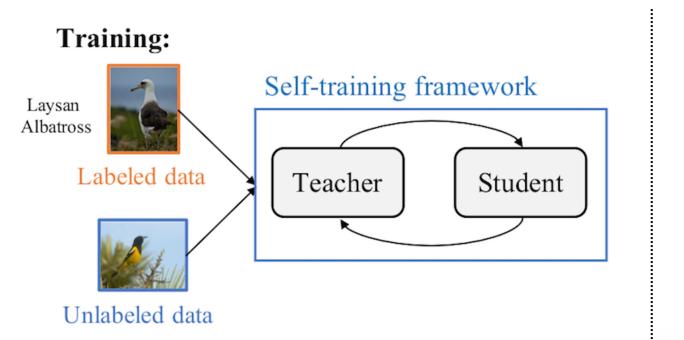


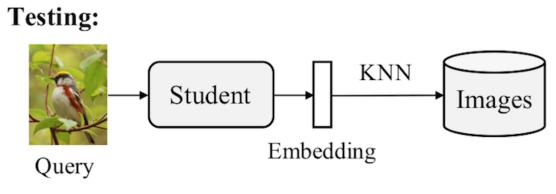
$$L_{SD}(G^+||G^-) = \max(\mu^- - \mu^+ + m, 0) + \lambda(v^+ + v^-)$$

Momentum Update

$$\mu^{+} = (1 - \beta) \times \mu_{b}^{+} + \beta \times \mu^{+}$$
$$\nu^{+} = (1 - \beta) \times \nu_{b}^{+} + \beta \times \nu^{+}$$

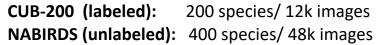
Putting it Together

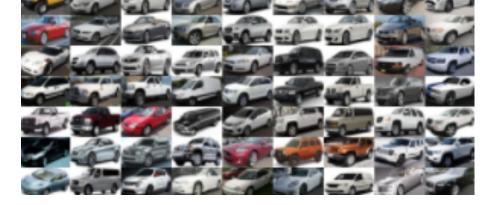




Top k retrieval results:

Evaluation





Cars-196 (labeled): 196 brands/ 16k images **CompCars (unlabeled):** 145 brands/ 16k images

In-shop (labeled): Fashion200k (unlabeled): 1k instances/15k images*

8k instances/ 52k images

Results: Performance Comparisons

				CUB-200-2011			Cars-196		
Methods	Frwk	Init	Arc / Dim	MAP@R	RP	P@1	MAP@R	RP	P@1
Contrastive [10]	[19]	ImageNet	BN / 512	26.53	37.24	68.13	24.89	35.11	81.78
Triplet [29]	[19]	ImageNet	BN / 512	23.69	34.55	64.24	23.02	33.71	79.13
ProxyNCA [18]	[19]	ImageNet	BN / 512	24.21	35.14	65.69	25.38	35.62	83.56
N. Softmax [35]	[19]	ImageNet	BN / 512	25.25	35.99	65.65	26.00	36.20	83.16
CosFace [25, 26]	[19]	ImageNet	BN / 512	26.70	37.49	67.32	27.57	37.32	85.52
FastAP [3]	[19]	ImageNet	BN / 512	23.53	34.20	63.17	23.14	33.61	78.45
MS+Miner [27]	[19]	ImageNet	BN / 512	26.52	37.37	67.73	27.01	37.08	83.67
Proxy-Anchor ¹ [15]	[15]	ImageNet	R50 / 512	-	-	69.9	-	-	87.7
Proxy-Anchor ² [15]	[19]	ImageNet	R50 / 512	25.56	36.38	66.04	30.70	40.52	86.84
ProxyNCA++ [22]	[22]	ImageNet	R50 / 2048	-	-	72.2	-	-	90.1
Mutual-Info [1]	[1]	ImageNet	R50 / 2048	-	-	69.2	-	-	89.3
Contrastive $[10](T_1)$	[19]	ImageNet	R50 / 512	25.02	35.83	65.28	25.97	36.40	81.22
Contrastive $[10](T_2)$	[19]	SwAV	R50 / 512	29.29	39.81	71.15	31.73	41.15	88.07
SLADE (Ours) (S_1)	[1 9]	ImageNet	R50 / 512	29.38	40.16	68.92	31.38	40.96	85.8
SLADE (Ours) (S_2)	[19]	SwAV	R50 / 512	33.59	44.01	73.19	36.24	44.82	91.06
MS [27] (T_3)	[19]	ImageNet	R50 / 512	26.38	37.51	66.31	28.33	38.29	85.16
MS [27] (T_4)	[19]	SwAV	R50 / 512	29.22	40.15	70.81	33.42	42.66	89.33
SLADE (Ours) (S_3)	[19]	ImageNet	R50 / 512	30.90	41.85	69.58	32.05	41.50	87.38
SLADE (Ours) (S_4)	[19]	SwAV	R50 / 512	33.90	44.36	74.09	37.98	46.92	91.53

Qualitative Results

Cars-196

Query

Proxy-Anchor

SLADE (Ours)

Comparison with Proxy Anchor [1] on CUB200 & Cars-196

Kim S et al. Proxy anchor loss for deep metric learning. CVPR 2020

Conclusions

- We propose a novel self-training framework to further improve the performance of deep metric learning which exploits unlabeled data.
- We propose a feature basis learning approach to deal with the noisy pseudo-labels during training.
- Experimental results demonstrate our approach significantly improves the performance over the state-of-the-art methods with additional unlabeled data.