

Multi-modal Alignment using Representation Codebook

Jiali Duan*

Liqun Chen*

Son Tran

Jinyu Yang

Yi Xu

Belinda Zeng Trishul Chilimbi

Background: Vision-Language Pretraining



[1] Learning transferable visual models from natural language supervision[C] ICML 2021

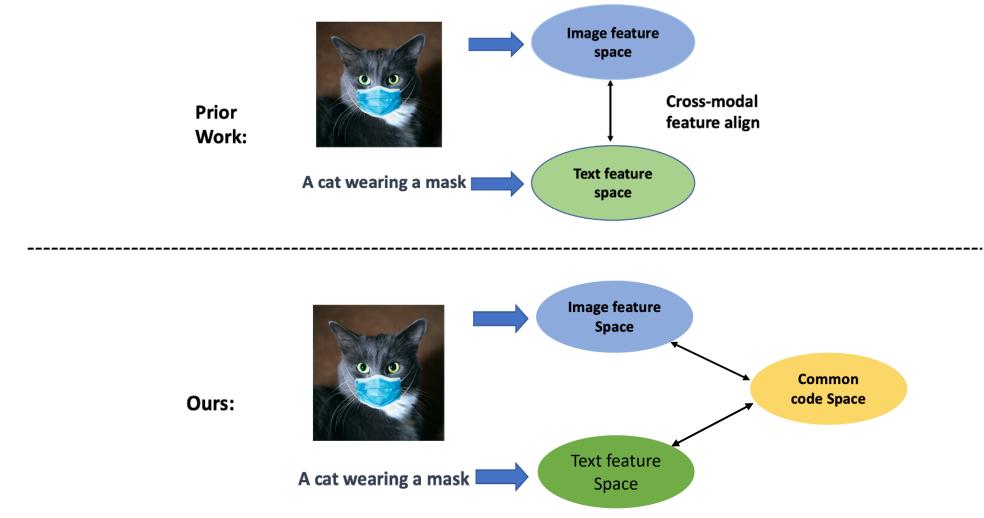
- [2] Scaling up visual and vision-language representation learning with noisy text supervision[C] ICML 2021
- [3] Oscar: Object-semantics aligned pre-training for vision-language tasks[C] ECCV 2020
- [4] Uniter: Universal image-text representation learning[C] ECCV 2020

[5] Align before fuse: Vision and language representation learning with momentum distillation[C] Neurips 2021

Background: Self-supervised Learning

[1] Emerging properties in self-supervised vision transformers[C]. ICCV 2021

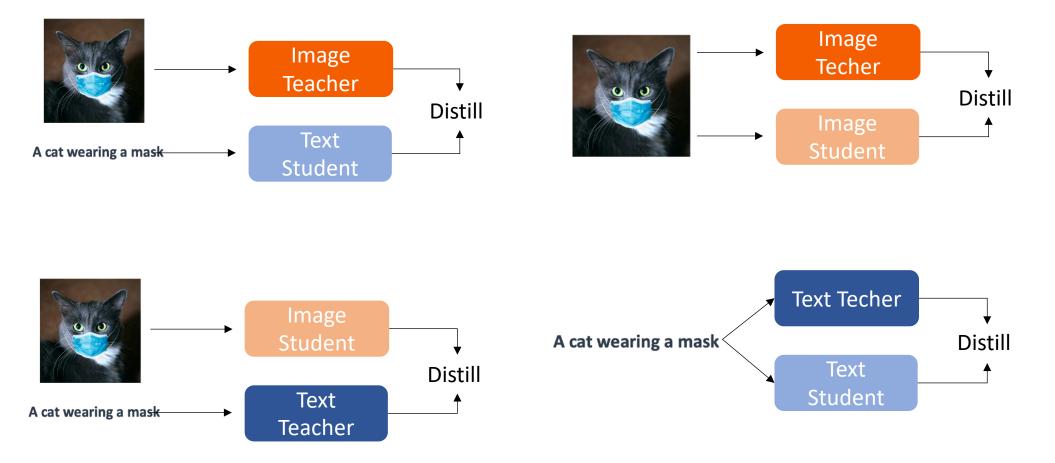
Motivation: Multimodal codebook as Semantic Bridge



[1] Unsupervised learning of visual features by contrasting cluster assignments[J]. Neurips 2020

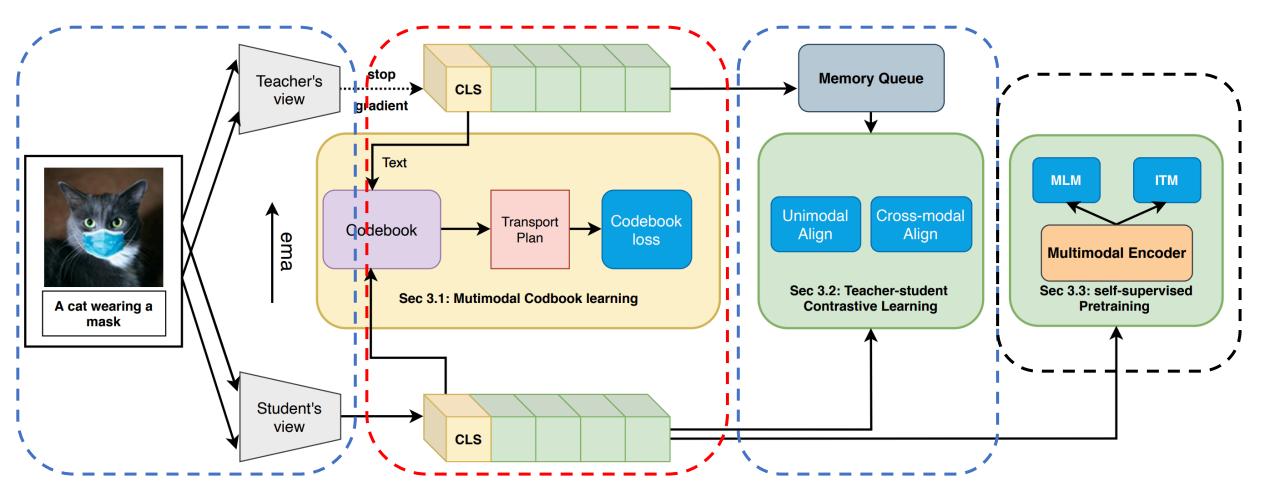
Motivation: Extension of SSL into Multimodal Setting

Image and text as two views of the same entity



[1] Align before fuse: Vision and language representation learning with momentum distillation[C] Neurips 2021

Framework Overview



Part 1: Multimodal Codebook Learning

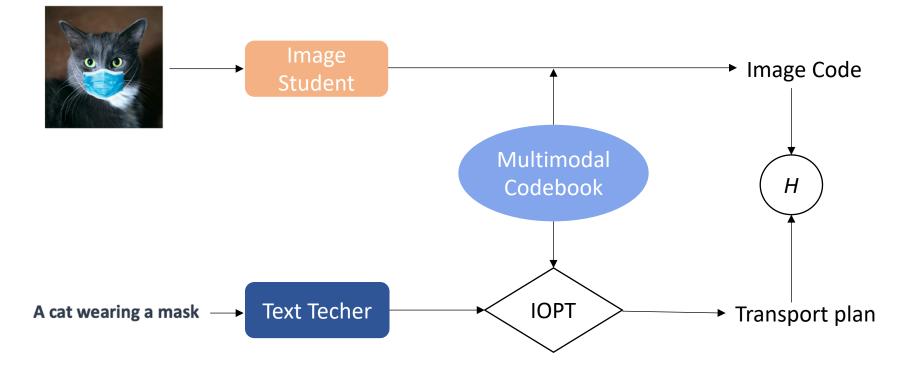
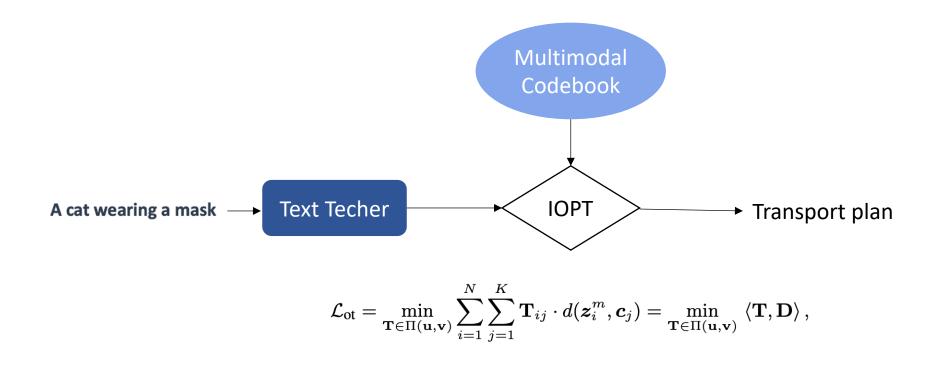


Image instances should distribute to clusters proportionally to the optimal text transport plan

$$L_{code} = L_{i2p} (Z_{v}, C, T_{t2p}) + L_{t2p} (Z_{t}, C, T_{i2p})$$

Part 1: Multimodal Codebook Learning



What's the cost to transport instances to clusters?

$$L_{code} = L_{t2p} (Z_t, C, T_{i2p}) + L_{i2p} (Z_v, C, T_{t2p}) + L_{ot} (Z_t, C) + L_{ot} (Z_v, C)$$

Part 2: Teacher-student Contrastive Learning

 $\begin{aligned} \boldsymbol{p}_{t2i}(T) &= \exp \frac{\boldsymbol{z}_t \boldsymbol{z}_v^{m^\top}}{\gamma} / \sum_{\boldsymbol{z}_v^{m'} \in \mathbf{Q}_v} \exp \frac{\boldsymbol{z}_t \boldsymbol{z}_v^{m'^\top}}{\gamma} \\ \boldsymbol{p}_{i2t}(I) &= \exp \frac{\boldsymbol{z}_v \boldsymbol{z}_t^{m^\top}}{\gamma} / \sum_{\boldsymbol{z}_t^{m'} \in \mathbf{Q}_t} \exp \frac{\boldsymbol{z}_v \boldsymbol{z}_t^{m'^\top}}{\gamma} \\ \boldsymbol{p}_{i2i}(I) &= \exp \frac{\boldsymbol{z}_v \boldsymbol{z}_v^{m^\top}}{\gamma} / \sum_{\boldsymbol{z}_v^{m'} \in \mathbf{Q}_v} \exp \frac{\boldsymbol{z}_v \boldsymbol{z}_v^{m'^\top}}{\gamma} \\ \boldsymbol{p}_{t2t}(T) &= \exp \frac{\boldsymbol{z}_t \boldsymbol{z}_t^{m^\top}}{\gamma} / \sum_{\boldsymbol{z}_t^{m'} \in \mathbf{Q}_t} \exp \frac{\boldsymbol{z}_t \boldsymbol{z}_v^{m'^\top}}{\gamma} \end{aligned}$

How close is text student to image teacher?

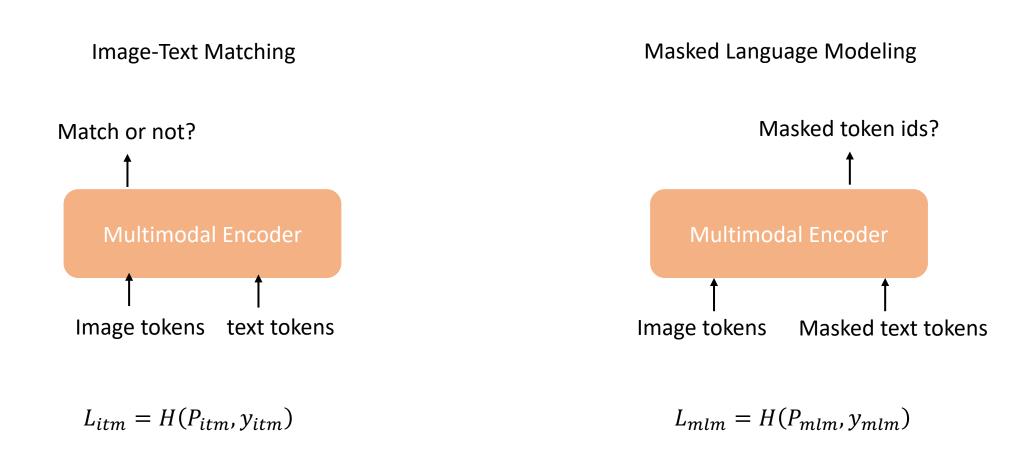
How close is image student to text teacher?

How close is image student to image teacher?

How close is text student to text teacher?

$$L_{align} = H(P_{t2i}, y_{t2i}) + H(P_{i2t}, y_{i2t}) + H(P_{i2i}, y_{i2i}) + H(P_{t2t}, y_{t2t})$$

Part 3: Pretraining



 $L = L_{code} + L_{align} + L_{itm} + L_{mlm}$

Experiments

Pretraining Data																
			CC3M			SBU		VG			CO	СО		Total		
#images 2.92		2M		859K		100K			113K			~4.0M				
÷	#texts 2.92		2M		859K			769K 56		57K		~5.1M				
	Evaluation Data															
	Retrieval					QA		١	/isual Re	easonin	g	١	/isual Er	ual Entailment		
	Train	Val	Test		Train	Val	Test		Train	Val	Test		Train	Val	Test	
COCO	113K	5K	5K	VQA2	83K	41K	81K	NLVR	Ref.	7K	7K	SNLI	29.8K	1K	1K	
Flickr	29К	1K	1K						[1]							

[1] Suhr A, Zhou S, Zhang A, et al. A corpus for reasoning about natural language grounded in photographs[J]. arXiv 2018

Quantitative Results

			MSCO	CO (5K)		Flickr30K (1K)						
Method	Text Retrieval			Image Retrieval			Text Retrieval			Image Retrieval		
	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10
ImageBERT [36]	44.0	71.2	80.4	32.3	59.0	70.2	70.7	90.2	94.0	54.3	79.6	87.5
Unicoder-VL [24]	-	-	-	-	-	-	64.3	85.8	92.3	48.4	76.0	85.2
UNITER [8]	-	-	-	-	-	-	80.7	95.7	98.0	66.2	88.4	92.9
ViLT [22]	56.5	82.6	89.6	40.4	70.0	81.1	73.2	93.6	96.5	55.0	82.5	89.8
CLIP [37]	58.4	81.5	88.1	37.8	62.4	72.2	88.0	98.7	99.4	68.7	90.6	95.2
ALIGN [21]	58.6	83.0	89.7	45.6	69.8	78.6	88.6	98.7	99.7	75.7	93.8	96.8
ALBEF 4M [25]	68.6	89.5	94.7	50.1	76.4	84.5	90.5	98.8	99.7	76.8	93.7	96.7
Ours	71.5	91.1	95.5	53.9	79.5	87.1	91.7	99.3	99.8	79.7	94.8	97.3

zero-shot image/text retrieval performance on MSCOCO and Flickr30K

finetuned image/text retrieval performance on MSCOCO and Flickr30K

	MSCOCO (5K)							Flickr30K (1K)					
Method	Text Retrieval			Image Retrieval			Text Retrieval			Image Retrieval			
	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	
ImageBERT [36]	66.4	89.8	94.4	50.5	78.7	87.1	87.0	97.6	99.2	73.1	92.6	96.0	
UNITER [8]	65.7	88.6	93.8	52.9	79.9	88.0	87.3	98.0	99.2	75.6	94.1	96.8	
VILLA [14]	-	-	-	-	-	-	87.9	97.5	98.8	76.3	94.2	96.8	
OSCAR [28]	70.0	91.1	95.5	54.0	80.8	88.5	-	-	-	-	-	-	
ViLT [22]	61.5	86.3	92.7	42.7	72.9	83.1	83.5	96.7	98.6	64.4	88.7	93.8	
UNIMO [27]	-	-	-	-	-	-	89.7	98.4	99.1	74.6	93.4	96.0	
SOHO [20]	66.4	88.2	93.8	50.6	78.0	86.7	86.5	98.1	99.3	72.5	92.7	96.1	
ALBEF 4M [25]	73.1	91.4	96.0	56.8	81.5	89.2	94.3	99.4	99.8	82.8	96.7	98.4	
Ours	75.3	92.6	96.6	58.7	82.8	89.7	95.1	99.4	99.9	83.3	96.1	97.8	

Ablation Studies

Ablations on different variants of our model for zero-shot image/text retrieval on MSCOCO and Flickr30K

	MSCOCO (5K)							Flickr30K (1K)					
Objective functions	Text Retrieval			Image Retrieval			Text Retrieval			Text Retrieval			
	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	
a: MLM+ITM+ITC (cross align) b: MLM+ITM+ITC (intra + cross)	68.60 69.86	89.50 89.48	94.70 94.42	50.10 50.52	76.40 77.02	84.50 85.17	84.90 85.80	97.20 96.80	99.00 98.10	68.18 69.70	88.58 89.60	93.02 93.48	
a + codebook (teacher feature) b + codebook (student feature) b + codebook (teacher feature)	70.74 71.12 71.10	89.54 89.62 90.60	94.88 94.78 95.10	51.39 51.40 52.10	77.86 77.42 78.00	85.60 85.53 85.90	86.00 86.30 86.70	97.00 96.90 97.30	98.20 98.30 98.70	70.18 70.34 71.40	90.66 90.00 90.82	94.44 93.84 94.62	

	TR@1	TR@5	TR@10 IR@1	IR@5	IR@10
ALBEF	55.70	81.92	88.78 41.08	69.01	78.86
0.5x codebook 2.0x codebook		83.9 84.46	90.64 43.74 91.06 43.62	72.10 71.69	81.58 81.12
3K codewords 500 codewords	58.96 55.52	84.28 81.68	90.98 44.66 89.28 41.53	72.31 68.75	81.68 78.43
Ours	59.38	84.04	91.20 44.71	72.63	81.69

Ablations on codebook sizes under limited pretraining regime using only MSCOCO

Qualitative Results

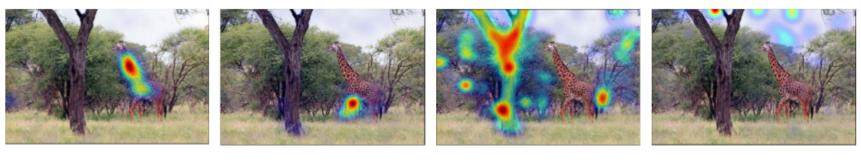
"A person does a trick on a skateboard while a man takes a picture"

"person"

"skateboard"

"takes"

"a giraffe walking through trees on a sunny day"



"giraffe"

"walking"

"trees"

"sunny"

Grad-CAM visualization on the cross-attention maps corresponding to individual worlds

Conclusions

- Propose *multi-modal codebook* to align image and text modality at cluster level
- Connect SSL with vision-language pretraining by generalizing teacher-student distillation to multimodal setting