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Abstract

Interpreting decision making is key to demonstrating
agent’s understanding of language semantics and its sur-
roundings. In this project, we endow our agent with
this ability by proposing a language synthesizer that is
able to synthesize human instructions from its navigation
trajectories and a contorller that is able to reliably ex-
ecute instructions. The synthesizer module also serves
as an alignment constraint between current observation
and instruction, which reduces the possibility of misalign-
ment in future time-steps. We show that our model is
able to achieve state-of-the-art performance in challeng-
ing 3D indoor navigation environment. The demonstration
video is available at https://sites.google.com/
view/submission-2019.1

1. Introduction
Imagine a robot navigating across rooms following hu-

man instructions: “Turn left and take a right at the table.
Take a left at the painting and then take your first right.
Wait next to the exercise equipment.”, the agent is expected
to first execute the action “turn left” and then locates “the ta-
ble” before “taking a right”. However in practice, the agent
might well turn right in the middle of the trajectory before
a table is observed, in which case the follow-up navigation
would definitely fail. Human on the other hand, has the abil-
ity to relate visual input with language semantics. In this
example, human would locate visual landmarks such as ta-
ble, painting, exercise equipment before making a decision
(turn right, turn left and stop). In this paper, we endow our
agent with similar reasoning ability by equiping our agent
with a synthesizer module that implicitly aligns language
semantics with visual observations.

Our insight is to exploit cycle-GAN framework [7],
where GA→B transforms input in domain A to domain

1This work is for final project of EE546, project poster is avail-
able at https://davidsonic.github.io/summary/Poster_
3d_indoor.pdf.

B while GB→A takes as input the generated output from
GA→B and transforms it back to the original domain A. By
maximizing the joint likelihood ofGA→B ∗GB→A, the two
models can augment each other through collaboration. We
use this strategy to interprete navigation decision into lan-
guage instruction and transforms instruction into action at
the same time. The two modules, which we dubbed synthe-
sizer and controller respectively, help enforce alignment be-
tween language semantics and visual observations via max-
imum likelihood optimization.

2. Related Work

Language instruction following in unstructured environ-
ment has witnessed a surge in research interests after sev-
eral release of benchmark dataset [1]. Its goal is to enable
the robot to navigate across 3D environment given human
language, either in the form of question or instructions. We
use [1] as our dataset, which deals with human instructions
with varying lengths and contexts. Another attribute of the
environment used is that the layout of the room is diversified
and complex, compared to previous environments where the
agent only needs to explore either in one room or simplified
rooms.

Our work can also be seen as a sequential decision mak-
ing process, similar in spirit with reinforcement learning
frameworks [4] where actions taken at previous timesteps
exert influence for the future.

3. Method

3.1. Framework Components

Given a natural language instruction with L worlds, its
representation is encoded as X = (x1, x2...xL) where xl
is the l-th word output by encoder LSTM. We follow the
same strategy in [3] to use panoramic view as visual input,
denoted as Vt = (vt,1, vt,2, ..., vt,K), where K is the number
of navigable directions and vt,k represents the image feature
at direction k. At each time step t, a decoder LSTM takes
grounded instruction x̂t, attended panoramic visual feature
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v̂t, previous action embedding at−1 and previous hidden-
state ht−1 as input, as Eqn 1.

ht = LSTM([x̂t, v̂t, at−1, ht−1]) (1)

Textual grounding. The agent is expected to understand
the context of instruction given current panoramic visual
observations. We equip our agent with textual attention to
help identify which part of language grounding is being uti-
lized for indoor navigation. The attention weight over L
words of the instruction is computed as:

ztextualt,l = (Wxht−1)
Txl, αt = softmax(ztextualt ) (2)

where Wx are parameters to be learnt. ztextualt,l denote
the correlation between word l and previous hidden state
ht−1 and αt is the weight over textual features X at time
t. Based on the attention distribution, the textual feature
x̂t is calculated as the weighted combination of textual
representation x̂t = αT

t X .

Visual grounding. For each decision making, the
agent needs to identify the most salient visual regions from
current visual observations. We perform visual attention
over image features from current views:

zvisualt,k = (Wv1ht−1)
TWv2vt,k, βt = softmax(zvisualt )

(3)
where Wv1 and Wv2 are parameters to be learnt. Similar
to Eqn 2, the grounded visual feature v̂t is the weighted
combination of visual features v̂t = βT

t V .

Action selection. Based on textual grounding, visual
grounding above, action chosen at time step t is a bilinear
dot product involving past history ht and navigable action
embedding at current step as Eqn 4.

yt = (Wo1ht)
TWo2at, pt = softmax(yt) (4)

The The agent then goes to next adjacent location by exe-
cuting aj with probability pj .

3.2. Training

Our framework consists of a instruction synthesizer and
action controller, responsible for interpreting human in-
structions and choosing action respectively. We train our
model using a two-step procedure. First, we first pretrain
our instruction synthesizer on the original dataset as fol-
lows:

Lsynthesizer = − 1

N

N∑
i=1

L∑
t=1

ysyni,t logPi,t,k (5)

where L is the maximum length of the instruction, N the
batch size and k navigable directions at timestep t.

We then use the pretrained the synthesizer for data aug-
mentation. Eventually, we train our action controller on the
augmented data and then finetune on the original dataset.

Ltotal = λLsynthesizer − (1− λ)
1

N

N∑
i

T∑
t

ycti,tlogPi,t,k

(6)
where the total loss is a weighted sum of cross entropy from
synthesizer as well as controller determined by λ.

4. Implementation Details
Image feature. Following [3], we use the pre-trained
ResNet-152 on ImageNet to extract image appearance fea-
tures. Therefore, the panoramic image feature at each
timestep is 36 × 2048, where 2048 is the mean-pooled im-
age feature with attention and 36=12 headings × 3 eleva-
tions with 30 degree intervals is the number of view angles.
Here, the agent only needs to make high-leevl decisions as
to which navigable direction to go next, instead of consider-
ing continuous action space, which is low-level visuomotor
control.

The appearance feature is then concatenated with a
4-dim orientation feature [sinφ,cosφ,sinθ,cosθ], where φ
and θ indicate the heading and elevation angles.

Network parameters. The length of each instruction
is padded to 80. The word embedding used for navigation
is 256 dimensional, initialized with GloVe embeddings [5].
A dropout layer with ratio 0.5 is appended after the embed-
ding layer for regularization. The encoder/decoder LSTM
has a hidden-state of 512 dimension. The textual grounding
attention weight αt is 80 dimensional while visual attention
weight αvt is 36 dimensional.

Submission to VLN challenge. For validating our
proposed approach, we submit our result to Vison and
Language Navigation challenge online test server. We
achieved 55.67% (corresponds to Table 1) success rate on
test-split.

We follow the guideline of submission rules, where all
world states in the trajectories generated from beam-search
were logged in the order they were traversed.

5. Experiments
R2R Dataset. We use the Room-to-Room (R2R) dataset [1]
in our experiment, which contains 21,567 navigation in-
structions in total with an average length of 29 words.
It’s built upon the Matterport dataset [2], which contains
10,800 panoramic views from 194,400 RGB-D images of
90 building-scale scenes.



Validation-Seen Validation-Unseen Test (unseen)
Method NE ↓ SR ↑ OSR ↑ NE ↓ SR ↑ OSR ↑ NE ↓ SR ↑ OSR ↑

Random 9.45 15.9 21.4 9.23 16.3 22.0 9.77 13.2 18.3
Student-forcing [1] 6.01 38.6 52.9 7.81 21.8 28.4 7.85 20.4 26.6

RPA [6] 5.56 42.9 52.6 7.65 24.6 31.8 7.53 25.3 32.5
Speaker-follower[3] 3.88 63.0 71.0 5.24 50.0 63.0 - - -
Speaker-follower(†) 3.08 70.1 78.3 4.83 54.6 65.2 4.87 53.5 96.0

Ours 3.26 67.58 74.93 4.91 53.26 64.96 - - -
Ours (†) 2.88 71.79 80.80 4.76 54.79 67.65 4.57 55.67 95.81

Table 1. Performance comparison of our method to previous work. NE is navigation error (in meters); lower is better. SR and OSR are
success rate and oracle success rate (%) respectively (higher is better). † means with data augmentation.

Evaluation Protocol. We follow the same evaluation pro-
tocol as [1, 3] in our paper, where the (1) Navigation Error
(NE) measures the shortest distance between the agent’s fi-
nal destination and the groundtruth destination; (2) Success
Rate (SR) considers the percentage of navigations which
end up with navigation error less than 3 meters; (3) Oracle
Success Rate (OSR), the success rate if the agent can stop
at the closes point to the goal along its trajectory.

5.1. Comparison with prior art

We compare our proposed approach with existing state-
of-the-art as shown in Table 1. When trained with syn-
thetic data, our method outperforms prior art by a mar-
gin of 2.1% in terms of success rate on the test set. We
achieve 71.79% SR and 54.79% SR on validation-seen
and validation-unseen respectively, compared to the best
existing model which achieved 70.1% SR and 54.6% re-
spectively. Without synthetic data, our model improves
Speaker-Follower model [3] with 4.58% SR and 3.26% SR
on validation-seen and validation-unseen respectively. Both
results with or without data augmentation indicate that our
proposed approach is more generalizable to unseen environ-
ments.

5.2. Qualitative Results

To further validate the proposed approach, we qualita-
tively show how our agent navigates the room given lan-
guage instruction and viusal observations at each timestep.
Figure 1 shows the navigation process of our agent fol-
lowing human instruction. At each timestep, the agent is
presented with panoramic observation space an the red ar-
row indicates the action chosen by our agent. At the end
of the episode, the agent emits a “stop” to finish the nav-
igation. More qualitative results are available at http:
//mcl-lab.usc.edu:3000/trajectory.html.

6. Conclusion
In this paper, we propose an interpretable navigation

agent that aims to resolve the ambiguity between language
semantics and visual observation in a photo-realistic 3D in-

door environment. At each timestep, the controller executes
the action which maximizes the similarity between the in-
struction given and the synthesized instruction. The synthe-
sized instruction in turn, serves as an illustrator behind the
action chosen. By involving the synthesizer and the con-
troller in a loop, we are able to reduce the misalignment
between visual inputs and instructions, which serves as an
intuitive way for understanding machine’s decision-making.
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Instruction:
Walk down and turn right. Walk a bit, and turn right towards the door. Enter inside, and stop in front of a zebra striped rug.

rear: -180 degree left: -90 degree front: 0 degree right: +90 degree rear: +180 degree

Navigation steps of the panorama agent. The red arrow shows the direction chosen by the agent to go next.

Figure 1. Qualitative result of the model


