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Motivation

Combining language instruction and
visual observation as guidance for 3D
indoor navigation

Framework Pipeline

Our visual navigation is mapless and only uses language
instruction X = (xy, x2...x1) & visual observation

Vi = (Vi1 Vi,2y «eey Vi k) as input, where L is the number of
words and K the number of navigable direction. The
visual-language navigator framework which we abbreviate as
VLN involve four major steps.

Step 1: Language Encoding

— Encode language

Step 3: Synthesize

— Train Synthesizer for
instruction into word data augmentation and

embeddings. pragmatic inference.

Step 2: Attention Step 4: Joint Training

— Extract ResNet-152 — Joint train synthesizer
visual features with and navigator with MLE.
attention.

Step 1: Language Encoding

The agent is expected to understand the context of instruction
given current panoramic visual observations. The attention
weight over L words of the instruction is computed as:

/ T
z, 7 = (Wxhe_1) ' xi (1)
a; = softmax(z™) (2)

where W, are parameters to be learnt. z!2Xt“@/ denote the
correlation between word | and previous hidden state h;_1 and

o; 1s the weight over textual features X at time t.

Step 2: Attention

For each decision making, the agent needs to identify the most
salient visual regions from current visual observations. We
perform visual attention over image features from current views:

z;’,",f“a’ = (Wvlht_l)TW\,zvt,k, B = softmax(z;isua’) (3)

where W,, and W,, are parameters to be learnt. Similar to
Eqgn 1. The grounded visual feature v; is the weighted
combination of visual features v; = BtT V.

Action Decision is Ambiguous

Misalignment between language
instruction and vision information

Proposed Solution

(a) Vision and Language Co-Attention
(b) Maximum Likelihood Estimation

Step 3-4: Joint Training and MLE

Training process involves two steps:

Specifically, the synthesizer is pretrained using Eqn. 4
di = argmaxyPs(d | Fy) (4)

We augment navigation instruction and route pairs

D = (di, 1) ...(dn, rn) by greedily generating synthetic
instructions on sampled new routes in the environment. Then,
the synthesizer model Ps(d | r) is joint-trained with the
navigator model Py(r | d) by approxmating Eqn. 5

argmax,eR(d)Pg(d | r))‘ + Pn(r | d)(l_)‘) (5)

where lambda is a hyper-parameter in the range [0, 1]. When
A\ is close to 1, it means that we rely mostly on the score of
synthesizer to select routes. We observe the best performance

with A = 0.1.

Results and Conclusions

we submit our result to Vison and Language Navigation
challenge online test server. We achieved 55.67% (corresponds
to Table 1,  means with data augmentation) success rate on

test-split, better than CVPR2018, ECCV2018 and NIPS2018

results.

Validation-Seen Validation-Unseen Test (unseen)

Method NEJ SR1T OSR{1 NEJ| SRT OSRT NEJ] SR1T OSR?T

Random 945 159 214 923 163 220 9.7/ 132 18.3
Student-forcing [1] 6.01 386 529 781 218 284 785 204 266

RPA [2] 556 429 526 765 246 318 753 253 325

Speaker-follower[3] 3.88 63.0 71.0 524 50.0 63.0 - - -
Speaker-follower(f) 3.08 70.1 783 483 546 652 487 535 96.0

Ours 3.26 6758 7493 491 53.26 6496 - - -
Ours () 2.88 71.79 80.80 4.76 54.79 67.65 4.57 55.67 95.81

Qualitative results are available at Project Page above or
https://sites.google.com/view/submission—-2019.
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